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The result proved below concerns a convex set of functions, measurable with 

respect to a fixed measure, and compact in the topology of pointwise convergence. 

The first and most interesting theorems along these lines were proved in [6] and 

[7] by A. Ionescu Tulcea. Several alternate proofs have been given since that time~ 

for example [8]. The case of nonconvex sets was studied by Fremlin [4] and by Tala- 

grand [ i0 ] .  
For the result proved here, I weaken the "separation property", and correspon- 

dingly weaken the conclusion, using the weak topology ~(LI, L =) rather than the 

metric topology of L I or L 0 . The result is then applicable to the proof of the 

recent characterization of Pettis integrability in terms of the "core". 

The following notation will be fixed throughout the paper. Let (O, S, ~) be 

a complete probability space. s = s S, ~) denotes the set of all real- 

valued measurable functions. L 0 = LO(o, S, ~) denotes the space of equivalence 

classes obtained by identifying functions that agree almost everywhere. Similar 

distinctions apply to s L I , s L m . The topology on s L O] is induced 

by the pseudometric [or metric] defined by 

d(f ,  g) =  If- gl ^ 1 d. 

If A is a subset of ~, the topology (on ~) of pointwise convergence on A 

will be denoted ~p(A) �9 Thus a net fG of functions converges to f according to 

Tp(A) iff fG(a) § f(a) for all a E A . If W is a subset of s we write 

(W, ~0) for the topological space with point set W and topology obtained from 

the pseudometric on ~0 Similarly, if W ~ s ~ we write (W, ~l) and (W, 

a(s ~m )) for W equipped with the strong and weak topologies (respectively) of 

s . 

The following hypotheses will be in effect through most of this paper: Let W 

be a subset of s . Let E ~ ~ . Suppose the following separation property holds: 

If f, g E N, then f = g on E if and only if f = g a.e. 

To reduce confusion, I will also use these two notations. Let W 1 = {fiE : 
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f E W) G B E, and let W 2 be the image of W under the quotient map ~0 § LO . 

The separation property says that the identity map W ~ W induces a hijeetion 

W I ~ W 2 

The first proposition is essentially due to Ionescu Tulcea. The proof is 

carefully spelled out here to show exactly the sort of reas0ningthat is involved�9 

PROPOSITION i. Suppose W and E are as above. If W i_ss Tp(~) - countabl~ 

compact a then W 2 is closed in L 0 and the evaluations f ~ f(e) ar____ee ~O-conti- 

nuous on W for e E E . That is~ the identity map (W, ~0) ~ (W, Tp(E)) i~s 

continuous. 

Proof. Let fn E W, and assume fn + f (~0) . There is a subsequence 

" Tp(G) " (f) with fn § f (a.e.) . But W is -countably compact, so (fn) has 

a cluster point g E W for the topology Tp(O) . Thus f = g a.e. This shows 

W2 is closed in L 0 . 

�9 + f (~0) . I claim that fn(e) § Now fix e E E Suppose fn' f E W and fn 

f(e) . Suppose not. Then there is a subsequence (fn) of (fn) so that f~(e) 

converges, but not to f(e) . Then there is a subsequence (f~) of (f~) such that 

�9 Up(n) f" . f" ~ f (a.e.) Let g E W be a -cluster point of ( n ) Then g(e) = 
n 

lira f" (e)~ f(e) while g = lira f" = f a.e. contradicting the separation pro- 
n ' n ' 

perty. This shows f ~* f(e) is s _ continuous on W . [] 

Note. Suppose the measure space (n, S, ~) has this property: if (fn) is 

a sequence in s and every subsequence has a measurable ~p(~) -cluster point, 

then there is a subsequence that converges a�9149 In that case, in the above propo- 

sition, the identity map (W, ~0) § (W, ~p(E)) is a homeomorphism. Fremlin [4] 

has shown that all perfect measure spaces have this property�9 

In the next theorem, the case E = ~ was proved by Ionescu Tulcea [6] . 

PROPOSITION 2. Suppose W and E are as above. If W i__ss Tp(~)- sequenti- 

ally compact, then the natural ma~ (W I, Tp(E)) + (W 2 , L O) is a homeomorphism. 

So the identity map (W, Tp(n)) § (W, ~0) is continuous. 

Proof. First, I claim that W 2 is compact in L O . Let fn E W, and suppose 

F �9 

fn + h (~0) . There is a subsequence (fn) of (fn) with fn + h (a.e.) . There 

is a subsequence (fn) of (fn) and g E W with f" + (Tp(~) n g ) . Then h = g 

a.e. Thus (W 2 , L 0) is compact. 

Next, since (W, Tp(O)) is sequentially compact, it is countably compact, so 

by Proposition l, the natural map (W 2 , L 0) § (W l, Tp(E)) is continuous. But 

(W 2 , L 0) is compact and (W l, Tp(E)) is Hausdorff, this natural map is a 
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homeomorphism. 

A set W ~ s is uniformly integrable iff for every r > 0 , there exists 

a < = so that 

for all f E W . In particular, W is bounded in the s norm. 

Here is the main result of the paper. Its proof is not difficult. 

PROPOSITION 3. Suppose W and E are as above. If W is convex~ uniformly 

integrable t and Vp({])- countably compact 2 then the two topologies Tp(E) and ~(~i 

s coincide on W . So the identity map (W, Tp(O)) § (W, q(s s is conti- 

nuou S. 

Proof. Let e E E and r E ]R . The (image in W 1 of the) set {f E W : 

f(e) _< r) is closed in (WI, Tp(E)) , and hence, by Proposition l, closed in (W2, 

L l) . It is therefore closed in (L 1 , L 1 ) . But it is convex, so it is closed in 

(L I, ~(L I, L')), and therefore closed in (W2, ~(L l, L~)) . Similar assertions 

can be made for a set [f E W: f(e) > r} . Thus the map f~ f(e) is ~(L I, L~)- 
continuous on W 2 . Thus the natural map (W2, q(L 1 , L~)) § (WI, Tp(E))is conti- 

nuous. Now W is uniformly integrable and W 2 is closed in L 1 , so (W 2 , ~(L 1 , 

L')) is compact [i, IV.8.11] . So the map (W2, q(L I, L~))~ (WI, Tp(E))is 

a homeomorphism, and thus the identity map (W, (~(~i ~)) + (W, Tp(E)) is a 

homeomorphism. [] 

~tes. (a) It follows in particular that (W 1 ~ Tp(E)) is sequentially 

compact. 

(b) Under these hypotheses it does not follow in general that the topologies 

t I and ~(~i, ~) coincide on W . A counterexample of Talagrand [i0] is also 

a counterexample to this. 

(c) The stronger conclusion that the tol0ologies ~l and T (E) coincide on W is 
P 

true if the measure space (Q, ~, ~) has this property: if (fn) is a sequence 

in ~0, and every Tp(~)- cluster point of (fn) vanishes a.e., then fn + 0 

in measure. Fremlin's theorem [4] shows that perfect measure spaces have this 

property. 

The proofs of the following two corollaries ate left to the reader. Corollary 4 

is essentially due to Ionescu Tulcea [7] �9 

COROLLARY 4. Suppose W an__dd E are as above. Suppose that E = ~ and that 

W is convex and Tp(~)- eountably compact. Then the two topelo~ies Tp(~]) and s 

coincide on W . If I in addition 2 W is uniformly integrable 2 then the three 
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topologies ~p(n), ~i a(~l s 

The "separation hypothesis" on W 

ry. 

COROLLARY 5. 

of s . Define 

Let W 

coincide on W . 

and E is not postulated in the next Corolla- 

be a uniformly inte6rable , convex~ Tp(O) - compact subset 

where the intersection is over all pairs 

An ~: f(~)~g(~)}#~ i~ f, g~W 

f(~) = g(~)} 

f, g E W with f = g a.e. 

and ~(~: f(~) ~ g(~)}> 0 . 

Assume that 

Then the 

identity map (W, Tp(~)) ~ (W, a(s I, s is continuous. In particular; for any 

B E S, the map f ~ ~B f d~ i_~s Tp(O)-continuous on W . 

The following Corollary is due to Tortrat [ll] ~ 

COROLLARY 6. Let X be a Banach space, S the Baire sets of (X , weak) , 

and ~ a probability measure on S . If ~ i_~s T- smooth 2 then there is a separa- 

ble subspace A of X with ~ - outer measure 1 . 

Proof. Let W be the unit hall of the dual space X* . Define A = ~ {f-l(o): 

f E W, f = 0 a.e.} . Then by T-smoothness, A has outer measure 1. By Corolla- 

ry 4, with E = ~ = A , the topologies Tp(A) and s coincide on W . Thus 

(W, Tp(A)) is metrizable, so the weak* topology on the dual hall of A is metri- 

zable, so the subspace A is separable. C] 

Note. From this can be deduced well-known theorems of Gothendieck and Phil- 

lips; see [2, Theorem 5.1]. 

The following is a result of Talagrand; partial results were proved by Geitz 

[5] and by Sentilles [9]. 

PROPOSITION 7. Let X be a Banach space 2 and %o : ~ -~ X scalarly measurable. 

Assume [fo~ : f E X* II f II < 1 ) is uniformly integrable. Suppose cor (C) ~ 

for all C E S with ~(C) > O , where 

cor~0(C ) = ~ [cl conv ~0 (C\N) : N E 5, ~(N) = 0 } 

Then ~0 is Pettis integrable. 
r # # �9 * 

Proof. Consider a measure space ( S , ~ ) defined by: ~ = X , 

S=Baire (X, weak), ~�9 = %0(~) . Let W be the unit ball of X*; this is a 

convex, uniformly integrable, subset of s �9 , 5", ~') . By Alaoglu's theorem 

[i, V.4.2] ~ W is Tp(~') - compact. Define A as in Corollary 5; in this case, 

A is the intersection of all closed hyperplanes of measure 1. This implies that 

cor~0(a ) g A . 

Let f E X*, ~f = O} < 1 . There is r > 0 so that either ~(f > e} > 0 
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or ~[f < -s} > 0 ; assume without loss of generality that the first of these occurs. 

For C = {f _> r if x E cor~0 (C) , then f(x) > r , so A • If ~ O) ~ ~ . So 

Corollary 5 is applicable. Thus the map f ~ ~ f d ~" is Tp(~')- continuous, so 

f ~ ~ fo~ d~ is weak* - continuous, and the Pettis integral ~ ~0 d~ exists. The 

same argument shows that the Pettis integral ~C ~ d~ exists for any C E ~ . [] 

Remarks. (a) In the terminology of [2], property (C) implies the PIP. (b) 

In the notation used above, the unit ball of A is W 1 , and (W 1 , Tp(A)) is the 

weak* topology there. This is homeomorphic to (W 2 , ~(L 1 , L ~ )), which is clearly 

an Eberlein compact. So the subspace A is isomorphic to a subspace of a WCG 

Banach space. However, A need not be separable. 
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